jueves, 31 de marzo de 2011

Semana 12 Jueves

El Tubo de Crookes es un cono de vidrio con 1 ánodo y 2 cátodos. Es una invención pero mas en parte una innovacion del científico William Crookes en el siglo XIX, y es una versión más evolucionada del desarrollo del Tubo de Geissler.

Descripción y utilización

Consiste en un tubo de vacío por el cual circulan una serie de gases, que al aplicarles electricidad adquieren fluorescencia, de ahí que sean llamados fluorescentes. A partir de este experimento (1895) Crookes dedujo que dicha fluorescencia se debe a rayos catódicos, que consisten en electrones en movimiento, y, por tanto, también descubrió la presencia de electrones en los átomos.
Al final del cono de vidrio, una banda calentada eléctricamente, llamada cátodo, produce electrones. Al lado opuesto, una pantalla tapada de fósforo forma un ánodo el que está conectado al terminal positivo del voltaje (unos cien voltios), del cual su polo negativo está conectado al cátodo.

La Cruz de Malta

Crookes para comprobar la penetrabilidad de rayos catódicos, debe realizar un tercer tubo, el cual llama la cruz de Malta, ya que entre el cátodo y el ánodo está localizado un tercer elemento, una cruz hecha de Zinc, un elemento muy duro.
El experimento consistía en que el rayo se estrellaba contra la cruz y la rodeaba, para posteriormente generar una sombra al final del tubo. Con este tubo es posible demostrar que los rayos catódicos se propagan en línea recta. Una pantalla metálica con forma de cruz de Malta, se dispone de modo que intercepte el haz de los rayos catódicos, produciendo una zona de sombra sobre la pantalla que satisface las leyes de la propagación de las ondas rectilíneas.



martes, 29 de marzo de 2011

Semana 12 martes


Equipo
6.4 Modelo atómico de Bohr.
6.5 Naturaleza dual de la materia: electrones, núcleos y partículas elementales
6.6 Límites de aplicabilidad de la mecánica clásica y origen de la física relativista.
1
Bohr describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón.

En éste modelo los electrones giran en órbitas circulares alrededor del núcleo; ocupando la órbita de menor energía posible, o sea la órbita más cercana posible al núcleo.





Podemos definir las partículas elementales como aquellas cuya estructura interna no podía ser descrita (en el estado actual del conocimiento) como una simple combinación de otras partículas.

Al introducir el estado de conocimiento que se tiene del mundo subatómico en la definición de las partículas elementales, hemos de tener en cuenta que éstas, al variar lo que sabemos del mundo atómico, cambian. Podemos, de hecho, distinguir (muy arbitrariamente) cuatro etapas en la historia de las partículas elementales.
La teoría general de la relatividad o relatividad general es una teoría del campo gravitatorio y de los sistemas de referencia generales, publicada por Albert Einstein en 1915 y 1916.
El nombre de la teoría se debe a que generaliza la llamada teoría especial de la relatividad. Los principios fundamentales introducidos en esta generalización son el Principio de equivalencia, que describe la aceleración y la gravedad como aspectos distintos de la misma realidad, la noción de la curvatura del espacio-tiempo y el principio de covariancia generalizado.


Poco después de la publicación de la teoría de la relatividad en 1905, Albert Einstein comenzó a pensar en cómo incorporar la gravedad en su nuevo marco relativista. En 1907, comenzando con un sencillo experimento mental basado en un observador en caída libre, se embarcó en lo que sería una búsqueda de ocho años de una teoría relativista de la gravedad. Después de numerosos desvíos y falsos comienzos, su trabajo culminó en noviembre de 1915 con la presentación a la Academia Prusiana de Ciencias de lo que hoy son conocidas como las ecuaciones de campo de Einstein. Estas ecuaciones especifican cómo la geometría del espacio y el tiempo está influenciado por la materia presente, y forman el núcleo de la teoría de la relatividad general de Einstein
2
Recuerda al modelo planetario de Copérnico, los planetas describiendo órbitas circulares alrededor del Sol. El electrón de un átomo o ión hidrogenoide describe también órbitas circulares, pero los radios de estas órbitas no pueden tener cualquier valor.
Consideremos un átomo o ión con un solo electrón. El núcleo de carga Ze es suficientemente pesado para considerarlo inmóvil,

Para Newton la luz estaba formada por pequeñísimos corpúsculos o partículas, y demostró las leyes de la reflexión y la refracción, en base a esa teoría. La luz se reflejaría como lo puede hacer una pelota cuando rebota sobre una superficie, y se refractaría al pasar de un medio a otro por la diferencia de velocidad de transmisión en los dos medios, pero no explicaba otros fenómenos como por ejemplo la difracción.

La mecánica clásica se subdivide en las ramas de la estática, que trata con objetos en equilibrio (objetos que se consideran en un sistema de referencia en el que están parados) y la dinámica, que trata con objetos que no están en equilibrio (objetos en movimiento). La Mecánica Clásica reduce su estudio al dominio de la experiencia diaria, es decir, con eventos que vemos o palpamos con nuestros sentidos. Tiene diversas extensiones: La mecánica relativista va más allá de la mecánica clásica y trata con objetos moviéndose a velocidades grandes (de valor relativamente próximo a la velocidad de la luz). La mecánica cuántica trata con sistemas de reducidas dimensiones (a escala semejante a la atómica), y la teoría del campo cuántico trata con sistemas que exhiben ambas propiedades.
3
El núcleo está compuesto por protones y neutrones. El número Z de protones coincide con el número de electrones en un átomo neutro. La masa de un protón o de un neutrón es aproximadamente 1850 veces la de un electrón. En consecuencia, la masa de un átomo es prácticamente igual a la del núcleo.
Sin embargo, los electrones de un átomo son los responsables de la mayoría de las propiedades atómicas que se reflejan en las propiedades macroscópicas de la materia.
El movimiento de los electrones alrededor del núcleo se explica, considerando solamente las interacciones entre el núcleo y los electrones (la interacción gravitatoria es completamente despreciable).

El modelo de Bohr es muy simple y recuerda al modelo planetario de Copérnico, los planetas describiendo órbitas circulares alrededor del Sol. El electrón de un átomo o ión hidrogenoide describe también órbitas circulares, pero los radios de estas órbitas no pueden tener cualquier valor.
Consideremos un átomo o ión con un solo electrón. El núcleo de carga Ze es suficientemente pesado para considerarlo inmóvil,

https://lh6.googleusercontent.com/-lz81QjJBIps/TYVieCtc-bI/AAAAAAAAASc/JCZDPpxjNQU/s1600/BORHH.gif

La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.

Louis de Broglie postuló la dualidad en su forma:

lambda=h/mxv

Donde lambda= la longitud de onda (metros)
h=Constante de Planck (6.626x10-34 Jxs)
m=masa (kg)
v=velocidad (m/s)

No muchos años más tarde, el francés Louis de Broglie propondría en su doctorado que si la luz                                                                   era una partícula y una onda a la vez, también el resto de partículas podrían serlo. El problema para detectar la onda de las partículas es que la longitud de ésta es inversamente proporcional a la masa y a la velocidad de la partícula. Por tanto, por poco grande que fuera la masa de una partícula, su onda ya era demasiado pequeña para ser observada. No obstante esto se lograría poco después en un experimento con unas partículas lo suficientemente poco masivas como para tener una onda “visible” y bastante manejable: los electrones. En el experimento se observó que los electrones tenían un comportamiento exclusivo de las ondas: la difracción. No explicaré ahora en qué consiste éste fenómeno, pero el caso es que  bastó para ver que las partículas también pueden ser descritas como ondas, con su frecuencia y su longitud de onda, demostrándose así la dualidad onda-partícula.
Todo esto no significa que cuando una partícula se mueve está “arrastrando” una onda tras de ella, sino que puede ser descrita como onda: de igual modo que puede describirse asignándole toda una serie de características propias de las partículas (masa, velocidad...), se puede describir utilizando una función de onda, es decir, también observamos las características de las ondas. Y si resulta que tiene las características que definen a una onda... es que es una onda. Lo que estamos acostumbrados a imaginar como simples partículas son entes de naturaleza dual que se comportarán como onda o como partícula según las circunstancias.

La física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea). Las herramientas de que dispone son la concepción galileana del espacio, las leyes de Newton de la dinámica y el cálculo infinitesimal.
Esta física explica en términos de ecuaciones sencillas y fenómenos bien conocidos la mayoría de los efectos  naturales observables a simple vista, dando una descripción adecuada y muy útil de ellos.
Física relativista
Tras los trabajos de A. Einstein, en los que el tiempo pasaba de ser una variable independiente del espacio a ser una variable más, acoplada a las variables espaciales, el concepto de simultaneidad de sucesos dejó de tener sentido como absoluto y pasa a depender explícitamente de la posición y estado dinámico del observador, es decir, se relativiza. Esta concepción de relatividad obligó a revisar conceptos clave como masa y energía.
La física clásica es deducida de la física relativista cuando la velocidad de los observadores es mucho menor que la velocidad de la luz, que se toma como constante universal.

4
El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos (dos problemas que eran ignorados en el modelo previo de Rutherford). Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905.
La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.

Louis de Broglie postuló la dualidad en su forma:

lambda=h/mxv

Donde lambda= la longitud de onda (metros)

h=Constante de Planck (6.626x10-34 Jxs)
m=masa (kg)
v=velocidad (m/s)
Física clásica
La física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea). Las herramientas de que dispone son la concepción galileana del espacio, las leyes de Newton de la dinámica y el cálculo infinitesimal.
Esta física explica en términos de ecuaciones sencillas y fenómenos bien conocidos la mayoría de los efectos  naturales observables a simple vista, dando una descripción adecuada y muy útil de ellos.
Física relativista
Tras los trabajos de A. Einstein, en los que el tiempo pasaba de ser una variable independiente del espacio a ser una variable más, acoplada a las variables espaciales, el concepto de simultaneidad de sucesos dejó de tener sentido como absoluto y pasa a depender explícitamente de la posición y estado dinámico del observador, es decir, se relativiza. Esta concepción de relatividad obligó a revisar conceptos clave como masa y energía.
La física clásica es deducida de la física relativista cuando la velocidad de los observadores es mucho menor que la velocidad de la luz, que se toma como constante universal.

5
El átomo de hidrógeno según el modelo atómico de Bohr
¤ El átomo de hidrógeno tiene un núcleo con un protón.
¤ El átomo de hidrógeno tiene un electrón que está girando en la primera órbita alrededor del núcleo. Esta órbita es la de menor energía.
¤ Si se le comunica energía a este electrón, saltará desde la primera órbita a otra de mayor energía. cuando regrese a la primera órbita emitirá energía en forma de radiación luminosa
El átomo es la parte más pequeña en la que se puede obtener materia de forma estable, ya que las partículas subatómicas que lo componen no pueden existir aisladamente salvo en condiciones muy especiales. El átomo está formado por un núcleo, compuesto a su vez por protones y neutrones, y por una corteza que lo rodea en la cual se encuentran los electrones, en igual número que los protones.


Un electrón es una partícula subatómica de carga negativa. Puede ser libre (no conectado a un átomo, o conexionado al núcleo de un átomo. Los electrones en los átomos existen en corazas esféricas de varios radii, representando los niveles de energía. Cuanto más grandes sean estas corazas esféricas, mayor será la energía que contiene el electrón.


Podemos definir las partículas elementales como aquellas cuya estructura interna no podía ser descrita (en el estado actual del conocimiento) como una simple combinación de otras partículas.

Al introducir el estado de conocimiento que se tiene del mundo subatómico en la definición de las partículas elementales, hemos de tener en cuenta que éstas, al variar lo que sabemos del mundo atómico, cambian. Podemos, de hecho, distinguir (muy arbitrariamente) cuatro etapas en la historia de las partículas elementales.



El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99.99% de la masa total del átomo.
Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo determina el elemento químico al que pertenece. Los núcleos atómicos con el mismo número de protones, pero distinto número de neutrones, se denominan isótopos; por esta razón, átomos de un mismo elemento pueden tener masas diferentes.



Física clásica
La física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea). Las herramientas de que dispone son la concepción galileana del espacio, las leyes de Newton de la dinámica y el cálculo infinitesimal.
Esta física explica en términos de ecuaciones sencillas y fenómenos bien conocidos la mayoría de los efect
s naturales observables a simple vista, dando una descripción adecuada y muy útil de ellos.
Física relativista
Tras los trabajos de A. Einstein, en los que el tiempo pasaba de ser una variable independiente del espacio a ser una variable más, acoplada a las variables espaciales, el concepto de simultaneidad de sucesos dejó de tener sentido como absoluto y pasa a depender explícitamente de la posición y estado dinámico del observador, es decir, se relativiza. Esta concepción de relatividad obligó a revisar conceptos clave como masa y energía.
La física clásica es deducida de la física relativista cuando la velocidad de los observadores es mucho menor que la velocidad de la luz, que se toma como constante universal.

6
Propuso un nuevo modelo atómico, según el cual los electrones giran alrededor del núcleo en unos niveles bien definidos.
La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.

Louis de Broglie postuló la dualidad en su forma:

lambda=h/mxv

Donde lambda= la longitud de onda (metros)
h=Constante de Planck (6.626x10-34 Jxs)
m=masa (kg)
v=velocidad (m/s)

No muchos años más tarde, el francés Louis de Broglie propondría en su doctorado que si la luz                                                                   era una partícula y una onda a la vez, también el resto de partículas podrían serlo. El problema para detectar la onda de las partículas es que la longitud de ésta es inversamente proporcional a la masa y a la velocidad de la partícula. Por tanto, por poco grande que fuera la masa de una partícula, su onda ya era demasiado pequeña para ser observada.
La mecánica clásica es una formulación de la mecánica para describir mediante leyes el comportamiento de cuerpos físicos macroscópicos en reposo y a velocidades pequeñas comparadas con la velocidad de la luz.
Existen varias formulaciones diferentes, de la mecánica clásica para describir un mismo fenómeno natural, que independientemente de los aspectos formales y metodológicos que utilizan llegan a la misma conclusión.

Física relativista: Surge de la observación de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de sacar todas las consecuencias del principio de relatividad de Galileo, según el cual cualquier experiencia hecha en un sistema de referencia desarrollará inercial se de manera idéntica en cualquier otro sistema inercial.

Modelo atómico de Borh de los elementos

Material: Tubos de descarga, hidrogeno, Helio, oxigeno, nitrógeno, argón, kriptón, neón, fuente de poder, lentes panorámicos.
Procedimiento:
Colocar cada uno, de los tubos de descarga en la fuente de poder, encender la fuente de poder y observar la o colores generados por cada gas.
Tubo de descarga
Nombre y símbolo
Numero de electrones
Modelo atómico de Bohr
Color en la fuente de poder
Hidrogeno
1
rosa
Helio
2
 http://t2.gstatic.com/images?q=tbn:ANd9GcQQVi8cm8bW1QT-xgWbGh81qFyjKh_orMKEGJN8kB2UsTEla4F9
Verde azul amarillo
Oxigeno
8
Amarillo, azul y verde
Nitrógeno
7
http://t1.gstatic.com/images?q=tbn:ANd9GcTzbzuMmeulwKDpWiIVbupjNPWd2yU505RhY7j0O4c8LhuF9PlFKghttp://t1.gstatic.com/images?q=tbn:ANd9GcTzbzuMmeulwKDpWiIVbupjNPWd2yU505RhY7j0O4c8LhuF9PlFKg
Rojo amarillo y verde
Neón
10
Verde y amarillo
Argón
18
Verde y anaranjado
Kriptón
36

Verde, amarillo y azul

Semana 11 jueves

Equipo
6.2 Cuantización de la energía y efecto fotoeléctrico.
6.3 Espectros de emisión y absorción de gases.
1
El efecto fotoeléctrico es un fenómeno muy popular en física, especialmente porque fue gracias al cual Einstein ganó el premio Nobel de física en 1921 (y no por la teoría de la relatividad, como muchos piensan.) Se trata de una de las formas en las que la luz interactúa con la materia; en particular, cuando incide un haz sobre un metal, algunos electrones son emitidos con diferentes energías. El fenómeno ya había sido observado en 1839 por Becquerel, pero no fue hasta fines del siglo XIX y los primeros años del XX que se comenzó a estudiar en profundidad.

Un metal puede ser pensado como una serie de núcleos que tienen electrones a su alrededor. Los electrones que estén más lejos del núcleo se podrán mover prácticamente libremente; estos son los electrones que transmiten la corriente eléctrica, por ejemplo. Sin embargo a estos electrones les falta un poco de energía para poder salir del metal y esta energía puede ser provista por un rayo de luz. La peculiaridad de los experimentos que se realizaron a fines de 1800 es que no respondían a las predicciones teóricas y no había forma de salvar estas contradicciones; fue este simple experimento el que desató, años más tarde el Clásica Vs. Cuántica, con Einstein como uno de sus propulsores.
La luz puede ser pensada como una onda que se propaga, al igual que el movimiento de la superficie del agua luego de arrojar una piedra sobre ella. Este movimiento tendrá dos características fundamentales: la amplitud y la frecuencia; es decir que tan alta es la onda y que tan seguido se producen. En el caso de la luz, la amplitud determina lo que se llama Intensidad. Clásicamente lo que se pensaba era que las ondas podían entregar energía a los electrones del metal paulatinamente, hasta que alcanzaran el nivel suficiente para ser desprendidos de la superficie. Esto quiere decir que cuanto más intensa fuera la luz, los electrones arrancados deberían poseer más energía (deberían haber recibido más energía del rayo luminoso.) Sin embargo experimentalmente se observó que la energía de los electrones eyectados del metal era independiente de la intensidad de la luz que recibían, pero que variaba con la frecuencia.
Espectro de absorción: se presenta cuando un solido incandescente
Se encuentra rodeado por un gas más frio, el espectro resultante
muestra un fondo interrumpido por espacios oscuros denominados
líneas de absorción, porque el gas ha absorbido de la luz aquellos
colores que éste irradia por sí mismo. Suele ocurrir que unos cuerpo
absorben sólo la radiación de unas determinadas longitudes de onda y
no aceptan absorber otras de otras longitudes, por lo que cada cuerpo,
cada elemento químico en la práctica, tiene su propio espectro de
absorción, el cual se corresponde con su espectro de emisión, al igual
como si fuera el negativo con el positivo de una película.
En la naturaleza se da también que otros cuerpos absorben radiación de
otros cuerpos dejando rayas negras.

Espectro de emisión: mediante suministro de energía calorífica, se
estimula un determinado elemento en su fase gaseosa, sus átomos
emiten radiación en ciertas frecuencias del visible, que constituyen su
espectro de emisión. Ninguno de estos se repite. Por ejemplo, algunos
de ellos lo hacen en el infrarrojo y otros cuerpos no. Ello depende de la
constitución específica de cada cuerpo, ya que cada uno de los
elementos químicos tiene su propio espectro de emisión.

2
Espectro de la radiación del cuerpo negro, resuelto por Max Planck con la Cuantización de la energía. La energía total del cuerpo negro resultó que tomaba valores discretos más que continuos. Este fenómeno se llamó Cuantización, y los intervalos posibles más pequeños entre los valores discretos son llamados quanta (singular: quantum, de la palabra latina para "cantidad", de ahí el nombre de mecánica cuántica.
Efecto fotoeléctrico

La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica
Espectro de absorción: se presenta cuando un solido incandescente
se encuentra rodeado por un gas más frio, el espectro resultante
muestra un fondo interrumpido por espacios oscuros denominados
líneas de absorción, porque el gas ha absorbido de la luz aquellos
colores que éste irradia por sí mismo.
Espectro de emisión: mediante suministro de energía calorífica, se
Estimula un determinado elemento en su fase gaseosa, sus átomos
emiten radiación en ciertas frecuencias del visible, que constituyen su
espectro de emisión. Ninguno de estos se repite


3
La experiencia que realizaron Franck y Hertz en 1914 es uno de los experimentos claves que ayudaron a establecer la teoría atómica moderna. Nos muestra que los átomos absorben energía en pequeñas porciones o cuantos de energía, confirmando los postulados de Bohr.

La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:
·                     Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.
·                     La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.
En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termo electrones, este es el tipo de emisión que hay en las válvulas electrónicas. También se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.
El efecto fotoeléctrico, descubierto por Hertz en 1887, demuestra que la energía luminosa transportada por las radiaciones que inciden en el metal se transforma en energía mecánica. Parte de esa energía mecánica se emplea en arrancar los electrones de la superficie del metal y parte se transforma en energía cinética de los electrones que salen expulsados con una velocidad (v).
La teoría ondulatoria de la luz no explica suficientemente el efecto fotoeléctrico ya que según esta teoría, la energía luminosa transportada por una radiación. Sin embargo, hemos dicho antes, que el umbral fotoeléctrico de pende de la frecuencia de la radiación excitatriz, y la mayor o menor iluminación del metal influye en el número de electrones impulsados, pero no en la velocidad que adquieren.
De aquí que se buscara una explicación del fenómeno fotoeléctrico partiendo de la teoría de los quanta por el físico Alemán Marx Planck (1858 - 1947) en el año 1900. Según esta teoría la energía transportada por una radiación de frecuencia (f) es siempre un múltiplo entero del producto (h x f) donde (h) representa una constante universal que vale, en el S.I., h = 6,62 x 10 -34 Joules.s.
El, producto (h x F) constituye el cuanto de energía, es decir, la menor cantidad de energía que se puede obtener en una radiación de frecuencia (f): es como un átomo o grado de energía. Esto llevo a Einstein a replantear nuevamente la teoría corpuscular de la luz debido a Newton, diciendo que la luz consta de pequeños cuantos o gramos de energía, a los que llamó fotones.
Cada fotón de una radiación (luminosa) de frecuencia (f) transporta una energía.
E = h x f
Siendo:
E: Energía del fotón
h: Constante universal, llamada constante de Planck; su valor es 6,63x10 -34 joule.s
f: Frecuencia de la radiación.
Observamos que según ésta ecuación:
·         La energía radiante, tal como la luz, se propaga en paquetes de energía, cuyos tamaños son proporcionales a la frecuencia de la radiación.
·         La energía ha de ser absorbida o emitida por cuantos completos, no siendo admisibles fracciones del cuanto.
En definitiva la energía, igual que la materia, presenta una estructura discontinua. A partir de la teoría de Planck, todas las energías están permitidas, sino sólo aquellas que sean múltiples de (h).
La hipótesis de Planck ha sido confirmada y es una de las más fructíferas de toda la Física; la cual fue presentada en un Congreso de Berlín. Esta hipótesis, se basó en las radiaciones emitidas por cualquier fotón luminoso, indicando que no son un flujo continuo de ondas luminosas, sino una corriente de fotones individuales.
El Fotón lo podemos definir así:
Un fotón es la unidad de radiación electromagnética con una longitud de onda y una frecuencia determinada, que posee una cierta cantidad de energía llamada “cuanto de energía”.
Cuando un elemento irradia energía no lo hace en todas las longitudes de onda. Solamente en aquellas de las que está “provisto”. Esas longitudes de onda sirven para caracterizar, por tanto, a cada elemento. También ocurre que cuando un elemento recibe energía no absorbe todas las longitudes de onda, sino solo aquellas de las que es capaz de “proveerse”. Coinciden por tanto, las bandas del espectro en las que emite radiación con los huecos o líneas negras del espectro de absorción de la radiación, como si un espectro fuera el negativo del otro.
Los espectros de emisión:
Todos los cuerpos emiten energía a ciertas temperaturas. El espectro de la radiación energética emitida es su espectro de emisión. Todos los cuerpos no tienen el mismo espectro de emisión. Esto es, hay cuerpos que emiten en el infrarrojo, por ejemplo, y otros cuerpos no.
En realidad, cada uno de los elementos químicos tiene su propio espectro de emisión. Y esto sirve para identificarlo y conocer de su existencia en objetos lejanos, inaccesibles para nosotros, como son las estrellas.
Así, el sodio tiene su característico espectro de emisión, lo mismo que el calcio, o que el hidrógeno, etc.

Un gas caliente y transparente emite líneas espectrales de colores brillantes contra un fondo de líneas oscuro.





Esas líneas oscuras, en el espectro de un gas en particular, se dan exactamente en las mismas longitudes de onda que las líneas oscuras en el espectro de absorción de un gas que tenga la misma composición química.



Los espectros de absorción:
Y también los cuerpos absorben radiación emitida desde otros cuerpos, eliminando del espectro de radiación que reciben aquellas bandas absorbidas, que quedan de color negro. Son lo que se llaman “rayas negras” o simplemente “rayas” del espectro.
También ocurre con la absorción, que unos cuerpos

Un liviano, transparente y caliente gas en frente de una fuente productora de radiaciones espectrales, especialmente de características continuas, genera un espectro de absorción, el cual se distingue por una serie de líneas espectrales oscuras entre los colores brillantes del espectro continuo. En el gráfico de la figura se grafica la intensidad lumínica versus la longitud de onda (visuales) contrastada con las líneas espectrales sustraídas del resto de la luz.

4


5
El efecto fotoeléctrico es un fenómeno muy popular en física, Se trata de una de las formas en las que la luz interactúa con la materia; en particular, cuando incide un haz sobre un metal, algunos electrones son emitidos con diferentes energías. El fenómeno ya había sido observado en 1839 por Becquerel, pero no fue hasta fines del siglo XIX y los primeros años del XX que se comenzó a estudiar en profundidad.
Un metal puede ser pensado como una serie de núcleos que tienen electrones a su alrededor. Los electrones que estén más lejos del núcleo se podrán mover prácticamente libremente; estos son los electrones que transmiten la corriente eléctrica, por ejemplo. Sin embargo a estos electrones les falta un poco de energía para poder salir del metal y esta energía puede ser provista por un rayo de luz

Resultado de la separación de los componentes de distinta longitud de onda de la luz o de otra radiación electromagnética. Los espectros pueden ser de emisión o de absorción y cada uno de ellos a su vez puede ser continuo y discontinuo (de rayos o bandas). Los espectros de emisión se obtienen a partir de la radiación emitida directamente sobre el cuerpo. Los espectros de emisión continuos se obtienen al pasar la luz de un cuerpo incandescente a través de un prisma óptico (luz solar, bombilla de filamento). Los espectros de emisión discontinuos los producen gases o vapores a elevada temperatura. Los rayos proceden de emisiones de átomos excitados, mientras que los de la banda proceden de las moléculas excitadas.
 Los espectros de absorción se forman cuando una radiación luminosa compuesta pasa a través de un cuerpo y este la absorbe total o parcialmente. Cuando la absorción es total, se obtiene un espectro continuo porque faltan todas las radiaciones absorbidas entre dos frecuencias distintas.
6
La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:
  • Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.
  • La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.
En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termo electrones, este es el tipo de emisión que hay en las válvulas electrónicas. Vamos a ver que también se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.
La experiencia que realizaron Franck y Hertz en 1914 es uno de los experimentos claves que ayudaron a establecer la teoría atómica moderna. Nos muestra que los átomos absorben energía en pequeñas porciones o cuantos de energía, confirmando los postulados de Bohr. Mediante una simulación se tratará de explicar las características esenciales de este sencillo experimento, observando el movimiento de los electrones y sus choques con los átomos de mercurio, e investigando el comportamiento de la corriente Ic con la diferencia de potencial U que se establece entre el cátodo y la rejilla.
Cada átomo es capaz de emitir o absorber radiación electromagnética, aunque solamente en algunas frecuencias que son características propias de cada uno de los diferentes elementos químicos.
Si, mediante suministro de energía calorífica, se estimula un determinado elemento en su fase gaseosa, sus átomos emiten radiación en ciertas frecuencias del visible, que constituyen su espectro de emisión.
Si el mismo elemento, también en estado de gas, recibe radiación electromagnética, absorbe en ciertas frecuencias del visible, precisamente las mismas en las que emite cuando se estimula mediante calor. Este será su espectro de absorción.


Espectros de emisión y de absorción

Material: Asa con alambre de platino., lámpara de alcohol, vaso de precipitados de 100 ml. espectroscopio
Sustancias: Cloruros de: Bario, calcio, estroncio, sodio .Acido clorhídrico.

Procedimiento:
Humedecer el asa del alambre de platino y Colocar una muestra de cada sustancias en el extremo del alambre de platino,
Colocar a la flama de la lámpara de alcohol la sustancia y observar la coloración de la flama, observar la flama con el espectroscopio y anotar sus observaciones en el cuadro.
sustancia
Numero de electrones
Color a la flama
Colores del espectro.
Cloruro de bario
2
Verde amarillento

Cloruro de calcio
2
Naranja

Cloruro de estroncio
1
Rojo

Cloruro de sodio
1
Rojo

Cloruro de cobre
2
Azul


Conclusiones: Los gases al ser irradiados producen un espectro cloruros como el de calcio y sodio producen emisiones por lo que su espectro es muy característico en cada caso mientras que los otros tres producen espectros de absorción y su espectro tiene rayas negras  en donde faltan las bandas absorbidas.